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Moore’s Law 
Moore’s Law, proposed by Gordon E. Moore in 1965, is a theoretical rule stating that the number of 

transistors in an integrated circuit chips doubles about every 2 years (18 months to be exact), hence it 

will be an exponential growth. This law is generally accepted by many computer companies, since 

Moore’s Law has a really profound impact on our current society, as it provides more powerful 

computers for relatively cheaper prices. This law can be observed in real life as computers nowadays 

have become smaller and smaller, but has an increasingly faster processing speed, as demonstrated in 

our smartphones1, with relatively cheaper prices.  

 

Rationale & Aim 
My interest in Moore’s Law developed when I first read Stephen Hawking’s book “Brief Answers to 

the Big Questions”, where the law is mentioned when stating the fact that the technology has rapidly 

developed at an unprecedented rate over the past few decades. This is also very relatable to my life. 

When I was born, there was hardly any touchscreen phones, but with merely few years later, there 

has been more touchscreen phones that are smaller and faster. As someone who has always been 

really interested in technology, this tremendous pace of growth has intrigued me massively. 

 

Moore’s Law is definitely an interesting concept and law that applies to computer growth. However, 

when talking about technological growth, the number of transistors in an integrated circuit chips may 

not be the only measure available. There are other measures such as computational operations or 

microprocessor clock speed that will also directly affect the performance or more accurately, 

processing speed, of a computer.  Therefore, I am curious to see the extent to which Moore’s Law 

can fit the growth of other measures like the ones suggested. 

 

Therefore, in this exploration, I aim to develop a mathematical model and an equation describing the 

growth of computer’s power in the form of microprocessor clock speed. Microprocessor clock speed 

is essentially the pulses per second generated by the processor. The higher the clock speed, the 

greater the computer power.2 Additionally, I will produce an ideal model and equation, which shows 

the development of microprocessor clock speed if it strictly follows Moore’s Law. This will allow 

                                                        
1“Moore's Law” (University of Missouri-St. Louis, May 17, 2013), 
http://www.umsl.edu/~siegelj/information_theory/projects/Bajramovic/www.umsl.edu/_abdcf/Cs4890/link1.html) 
2 Margaret Rouse, “What Is Clock Speed? - Definition from WhatIs.com,” WhatIs.com, April 2005, 
https://whatis.techtarget.com/definition/clock-speed) 
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me to compare the two equations and models, in order to explore whether Moore’s Law is accurate 

or not to describe the growth of computer power.  

The microprocessor’s clock speed data from 1976 to 2016 is attached below (table 1). 

Year Microprocessor clock speed (Hertz (pulses per second)) 

1976 1350000 

1977 2060000 

1978 2140000 

1979 2290000 

1980 1940000 

1981 2410000 

1982 2630000 

1983 4070000 

1984 5190000 

1985 5890000 

1986 7210000 

1987 9430000 

1988 12660000 

1989 15630000 

1990 19440000 

1991 21180000 

1992 29030000 

1993 34150000 

1994 53380000 

1995 78040000 

1996 140500000 

1997 184280000 

1998 337000000 

1999 413680000 

2001 1684000000 

2002 2317000000 

2003 3088000000 

2004 3990000000 

2005 5173000000 
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2006 5631000000 

2007 6739000000 

2010 11511000000 

2013 19348000000 

2016 28751000000 
Table 1: Microprocessor Clock Speed (Data extracted from “Our World In Data”3) 

 

Part 1: Ideal Microprocessor’s Clock Speed Model 
According to Moore’s Law, microprocessor clock speed should ideally double every 2 years. Thus, 

the sequence would be a geometric sequence as the next term of a sequence is found by multiplying 

the previous term by a common ratio. 

 

The general formula for a term in a geometric sequence is given by:  

𝑢" = 𝑢$𝑟"&$ 

In the formula: 

• 𝒖𝒏	is the term number 

• 𝒖𝟏 is the first term of the sequence  

(This will be 1350000 as it is the first data value available, so it is assumed that there is no 

data before) 

• 𝒓 is the common ratio  

(This will be 2 as it is increased at a doubling rate.) 

• 𝒏 is the -th term 

 

This will allow an ideal set of data from 1976 to 2016 to be calculated through the geometric 

formula. It would be the data if the microprocessor clock speed strictly doubles every 2 years. 

Substituting the available value into the formula: 

𝑢" = 1350000	 ×	2"&$ 

For the purpose of this exploration, since it is stated that the growth will be doubling every 2 years. 

So, from 1976 to 2016, in a total of 40 years, there will be 20 two-years period. Thus, the highest n-th 

term will be 21st, as the first term will be 1976, since it is the starting year. This equation will give 

the value for each term over the 40 years. For example, to find the value at the 13th term: 

                                                        
3 Max Roser and Hannah Ritchie, “Technological Progress,” Our World in Data, May 11, 2013, 
https://ourworldindata.org/technological-progress) 
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𝑢$2 = 1350000	 ×	2$2&$ 

𝑢$2 = 1350000	 ×	2$3 

𝑢$2 = 552960000 

Therefore, at year 2000 (the 13th term), the microprocessor clock speed should ideally be 552960000. 

Using the same method to find the rest of the data, table 2 shows the ideal set of data.  

 

The microprocessor clock speed has been scaled down to × 106 for clearer representation of data as 

the scale would be too big due to the y-value (microprocessor clock speed) reaching over 1 trillion. 

n-th term Year Years since 1976 Microprocessor Clock Speed (Hz) × 𝟏𝟎𝟕 

1st 1976 0 0.13500000 

2nd 1978 2 0.27000000 

3rd 1980 4 0.54000000  

4th 1982 6 1.0800000 

5th 1984 8 2.1600000 

6th 1986 10 4.3200000 

7th 1988 12 8.6400000 

8th 1990 14 17.280000 

9th 1992 16 34.560000 

10th 1994 18 69.120000 

11th 1996 20 138.24000 

 12th 1998 22 276.48000 

13th 2000 24 552.96000 

14th 2002 26 1105.9200 

15th 2004 28 2211.8400 

16th 2006 30 4423.6800 

17th 2008 32 8847.3600 

18th 2010 34 17694.720 

19th 2012 36 35389.440 

20th 2014 38 70778.880 

21st 2016 40 141557.76 

Table 2: Ideal Data Set 

 

So, ideally by 2016, the microprocessor clock speed should be at around  

141557.76 × 106 Hz if the increase in microprocessor clock speed follows Moore’s Law strictly. 
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Plotting the model of the ideal data on a graph: 

 
From the model alone, the limits of the graph of 𝑓(𝑥)  can be easily observed: 

 

𝒇(𝒙) is defined as Microprocessor Clock Speed / Hz (× 𝟏𝟎𝟕) 

As 𝑥 → +∞,  𝑓(𝑥) → +∞ 

∴ lim
"→&I

𝑓(𝑥) does not exist. 

As 𝑥 → −∞,  𝑓(𝑥) → 0 

∴ lim
"→I

𝑓(𝑥) = 0 , and the horizontal asymptote is y = 0. 

 

The graph would be an exponential graph, due to its following characteristics: 

• Continuous, smooth increasing trend 

• The range is 𝑦 > 0 

• The domains are all real numbers 

• The graph has a 𝑦-asymptote as x approaches 0. 

Therefore, it could be represented with the general function for natural exponential: 

𝑓(𝑥) = 𝑎 × 𝑒OP&Q + 𝑑 

Before moving further, it is important to note that the model starts at around 0 in the 𝑦-axis, so it has 

not been transformed vertically, thus the constant 𝑑 that controls this transformation will be 0. Also, 

there is an assumption that the function is not transformed horizontally, so the constant 𝑐 which 
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determine the horizontal transformation will be 0, thus there is less constant that may affect the shape 

of the graph in order to simplify the process. Thus, the function is now: 

𝑓(𝑥) = 𝑎 × 𝑒OP 

• 𝑎 which multiplies to vertically stretch up or down the function 

• 𝑏 is the rate of change (affects the horizontal stretch of the function) 

• 𝑥 is the time intervals 

 

One possible approach to find the function that fits the model is through linearizing the function by 

taking the natural log of each term, since determining the function of a non-linear can be tricky. This 

method is called “linear regression”, which is basically a method to determine the relationship 

between two variables by fitting a linear function to the data.4 After converting to a linear function, it 

is possible to find the gradient and y-intercept, which can be substituted and converted back in its 

exponential form to determine all the constants. With the function 𝑦 = 𝑎 × 𝑒OP, it becomes: 

logW 𝑦 = logW𝑎 +	 logW𝑒OP 

Using rules of logarithm, this can be simplified further to: 

logW 𝑦 = logW𝑎 + 	𝑏𝑥 

Since logW𝑥 =	ln 𝑥, the function can be written as: 

ln 𝑦 = ln 𝑎 + 	𝑏𝑥 

The function now resembles the equation of a line: 𝑦 = 𝑚𝑥 + 𝑐, where 

• 𝑦 = ln 𝑦 as the y-axis 

• 𝑐 = ln 𝑎 as the y-intercept 

• 𝑚 = 𝑏 as the gradient 

• 𝑥 = 𝑥 as the x-axis 

Taking the natural log of 𝑦, a new set of data can be generated: 

Time (Year since 1976) (x) Microprocessor Clock Speed (y) In(y) 
0 0.135 -2.0024805 
2 0.27 -1.3093333 
4 0.54 -0.6161861 
6 1.08 0.07696104 
8 2.16 0.77010822 

10 4.32 1.4632554 
12 8.64 2.15640258 
14 17.28 2.84954976 

                                                        
4 Rod Pierce, “Least Squares Regression,” March 2, 2019, https://www.mathsisfun.com/data/least-squares-
regression.html) 
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16 34.56 3.54269694 
18 69.12 4.23584412 
20 138.24 4.92899131 
22 276.48 5.62213849 
24 552.96 6.31528567 
26 1105.92 7.00843285 
28 2211.84 7.70158003 
30 4423.68 8.39472721 
32 8847.36 9.08787439 
34 17694.72 9.78102157 
36 35389.44 10.4741687 
38 70778.88 11.1673159 
40 141557.76 11.8604631 

 

Thus, a new graph in log scale can be produced: 

 
This linear shape of the graph is expected since the increase is constant throughout at a doubling rate.  

The properties of this function are: 

• The y-intercept is around -2, as can be observed from the graph. 

• Finding the gradient of the function: 
𝑦3 − 𝑦$
𝑥3 − 𝑥$

= 𝑚 

11.86 − 1.46
40 − 10 = 𝑚 

0.347 = 𝑚 

• The formula for the log scale function is, therefore 𝒚 = 𝟎. 𝟑𝟒𝟕𝒙 − 𝟐 

 

Since 𝑦 = 0.347𝑥 − 2 is equivalent to ln 𝑦 = 𝑏𝑥 + ln 𝑎, to convert it back to its corresponding 

exponential function, the logarithm law (stated below) can be applied. 
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𝑎P = 𝑏 ↔ 𝑥 log` 𝑏 

 

logW 𝑦 = 𝑏𝑥 + logW 𝑎  [logW𝑥 =	ln 𝑥] 

𝑦 = 𝑒OP × 𝑒abcd `  [logW 𝑎 = 	−2]	[𝑏 = 0.347] 

𝑦 = 𝑒&3 × 𝑒g.2h6P 

Thus, the natural exponential function is now: 

𝑦 = 0.135𝑒g.2h6P  

Plotting the function against the model: 

 
The function can describe the model perfectly. To double-check on the function, we can test the limit 

of the function against the limits stated earlier. 

lim
P→iI

(0.135𝑒g.2h6P) = 	0.135𝑒iI 

The limit to positive infinity will always return a positive value as the value 𝑒 will always be 

positive. 

lim
P→&I

(0.135𝑒g.2h6P) = 	0.135𝑒&I = 0.135 (0) 

The limit to negative infinity will always return 0 as the value 𝑒 as the 𝑥 gets larger will becomes 0. 

This means that there is a limit at y = 0. 

Both limit tests are successful, thus proving that the function describing the model is accurate. 

 

Part 2: Actual Microprocessor’s Clock Speed Model 
The data for the actual microprocessor’s clock speed from 1976 to 2016 is attached in Table 1. 

Similarly, the values have been scaled down to × 106, for the graph and values to be easily 

observable and modified. 

𝑦 = 0.135𝑒g.2h6P  
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From observing the model alone, it can be inferred that it is not a perfect exponential graphs there are 

several linear points between 𝑥 = 24 and 𝑥 =	32. Nonetheless, an exponential function will still 

work to describe the model as the anomalies only form a small part of the model.  

 

Since the ideal function has been identified, it is possible to use it to compare with the real model to 

identify which variable(s) in the general function of exponential is likely to change: 

𝑓(𝑥) = 𝑎 × 𝑒OP&Q + 𝑑 
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Comparing both models, the following properties for the function for the real model can be deduced: 

• There may be a horizontal stretch (affecting 𝑏), or/and  

• There is a vertical stretch (affecting 𝑎), 

Both will affect the curvature of the graph. It is unlikely that there is a horizontal or vertical 

translation since both models start at the same point. Basing on this assumption that there is no 

translation, it is possible to employ the same methods as earlier. By linearizing the data, then plotting 

it in terms of ln(x) against number of years, the gradient and intercept of the graph can be used to 

identify the exponential function that best describes the real model.  

After algebraic manipulation to replace the ln into 𝑒P, the function to describe the real model turns 

out to be: 

logW 𝑦 = 𝑏𝑥 + logW 𝑎  is equivalent to "𝑦 = 0.2876𝑥 − 2.8309" 

𝑦 = 𝑒OP × 𝑒abcd `  [logW 𝑎 = 	−2.8309]	[𝑏 = 0.2876] 

𝑦 = 𝑒&3.k2gl × 𝑒g.2h6P  

𝑦 = 0.061𝑒g.3kkP  

This is plotted against the model, attached below: 

 

𝑦 = 0.061𝑒g.3kkP  

y = 0.2876x - 2.8309
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The function, however, does not describe the model perfectly, as there are anomalies that do not fit 

in line with it. This is due to a possibility that during those periods, the average rate change increases 

faster or slower than the rest; it is faster when the points are above the line, while slower when they 

are below the line. These fluctuations limit the accuracy of the function, as the function would only 

provide a line of best fit that is in between all the data points. Nevertheless, the function still 

manages to describe the majority of the model to a good extent in general. 

 

Part 3: Comparing Rate of Change 
Now that both functions have been identified, the comparison between the average rate of change of 

the two functions can be found. 

 

Ideal function:  𝑦 = 0.135𝑒g.2h6P   Real function:  𝑦 = 0.061𝑒g.3kkP  

 

One possible way is through the first derivative of the functions, which can be found using the 

derivative of 𝑒P:  
mn
mP
= 𝑒o(P) × 𝑓′(𝑥). 

For instance, the first derivative of the ideal function: 

𝑦 = 0.135𝑒g.2h6P  
mn
mP
= 0.135	 ×	𝑒g.2h6P × 0.347  

𝑑𝑦
𝑑𝑥 = 0.047𝑒g.2h6P  

Similarly, the first derivation of the real function is: 
𝑑𝑦
𝑑𝑥 = 0.018𝑒g.3kkP  

From the derivates of both functions, it can be inferred that at any given value of 𝑥	{𝑥	 ⊂ 	ℝ}, the 

derivative of the real function is always smaller than the derivative of the ideal function. This means 

that the real function will always have a slower rate of change, hence gentler slope.  

 

However, how much slower is the real function? This can be found through the average rate of 

change (gradient function): nuvnw
PuvPw

 . Through drawing a line connecting two points, the average rate of 

change between the 2 points can be calculated through the gradient function. To ensure the 

reliability, the same points of 𝑥 have been chosen at 𝑥 = 0, and 𝑥 = 30. 
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The average rate of change of the real function is 137.8 

Hz/year slower than the ideal function. 

 

To conclude, Moore’s Law is not able to perfectly describe the growth of microprocessor growth’s 

speed. However, it is important to note that the law is accepted not for its applicability, but for its 

ability to predict the trend of computer growth. Despite not being able to describe the growth of 

microprocessor clock speed perfectly, the exponential growth of it thus fit the general prediction of 

Moore’s Law, that technology grows in an exponential rate. This result is very applicable to the real-

world situations, as this increase in technological power could be very beneficial to humankind. 

Especially with the exponential increase in microprocessor clock speed, computers could potentially 

operate faster than ever, thus allowing more complex calculations to be made in a shorter amount of 

time. This could be extremely useful for human to solve issues that are deemed to be impossible to 

right now, such as solving string theory in the Physics realm. 

 

However, there could be several factors that may affect the validity of the result. For example, since 

the value is very large, the scale of the graph has to be minimized to a power of × 106. Therefore, 

while the determined functions manage to describe both models to a great extent, it may not be able 

to describe them as well when the scale is increased back to its original. Plotting a graph without 

scaling it down is difficult to achieve due to the inability to observe the whole model clearly in one 

page.  

 

One other improvement that can be made to enhance the exploration is to analyse the growth of non-

computer related technology, such as commercial airplane flight speed, to figure out whether 

Moore’s Law can perfectly describe the growth of other types of technology, which are also very 

applicable to the real world. 

 

 

Ideal Function Real Function 

(0,0.135) (30,4480) (0,0.061) (30,345) 

4480 − 0.135
30 − 	0  

= 149.3 

345 − 0.061
30 − 	0  

= 11.5 

𝑦 = 0.061𝑒g.3kkP 

𝑦 = 0.135𝑒g.2h6P 
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